Geometric Means and Tensor Products

Bao Qi Feng, Beth Osikiewicz and Jeffrey A. Osikiewicz

Addresses: | Department of Mathematical Sciences |
| :--- |
| Kent State University |
| Tuscarawas Campus |
| 330 University Dr NE |
| New Philadelphia, OH 44663 (U.S.A.) |
| Fax: (330) 339-3321 |
| Feng's E-mail address: bfeng@tusc.kent.edu |
| Feng's Phone: (330) 308-7416 |
| B. Osikiewicz's E-mail address: bosikiewicz@tusc.kent.edu |
| B. Osikiewicz's Phone: (330) 308-7412 |
| J. Osikiewicz's E-mail address: josikiewicz@tusc.kent.edu |
| J. Osikiewicz's Phone: (330) 308-7418 |

Abstract We discover a variety of new inequalities involving the tensor product and the geometric mean of positive definite matrices. This work builds on a generalization of an inequality of Ando [2] by Feng and Tonge [4].

Keywords and Phrases. Arithmetic mean, α-power mean, geometric mean, harmonic mean, and tensor product.

1 Introduction

When M_{1} and M_{2} are arbitrary $n \times n$ matrices, their arithmetic mean is defined as

$$
A\left(M_{1}, M_{2}\right):=\frac{1}{2}\left(M_{1}+M_{2}\right),
$$

and if M_{1} and M_{2} are positive $n \times n$ matrices, their harmonic mean can be defined as

$$
H\left(M_{1}, M_{2}\right):=\left[\frac{1}{2}\left(M_{1}^{-1}+M_{2}^{-1}\right)\right]^{-1} .
$$

For this paper, if M is a positive definite $n \times n$ matrix and $\alpha \in \mathbb{R}$, then M^{α} will denote its unique positive $\alpha^{\text {th }}$ power. From the definition, one can easily verify that

$$
\left(M^{-1}\right)^{\alpha}=\left(M^{\alpha}\right)^{-1}=M^{-\alpha} .
$$

Ando [2] gave the definition of the geometric mean of two positive $n \times n$ matrices, M_{1} and M_{2}, as

$$
G\left(M_{1}, M_{2}\right):=M_{1}^{1 / 2}\left(M_{1}^{-1 / 2} M_{2} M_{1}^{-1 / 2}\right)^{1 / 2} M_{1}^{1 / 2}
$$

It is clear that $G\left(M_{1}, M_{2}\right)>0$ and when M_{1} and M_{2} commute, we have

$$
G\left(M_{1}, M_{2}\right)=\left(M_{1} M_{2}\right)^{1 / 2} .
$$

Ando's definition obeys the arithmetic-geometric-harmonic mean inequality,

$$
H\left(M_{1}, M_{2}\right) \leq G\left(M_{1}, M_{2}\right) \leq A\left(M_{1}, M_{2}\right) .
$$

If $M=\left(m_{i j}\right), N=\left(n_{i j}\right)$ are matrices of the same size, their Hadamard product $M \circ N$ is the matrix of entrywise products; namely,

$$
M \circ N=\left(m_{i j} n_{i j}\right) .
$$

Ando proved that for positive definite $n \times n$ matrices M, N we have

$$
\begin{equation*}
G(M, N) \circ G(M, N) \leq M \circ N . \tag{1}
\end{equation*}
$$

Note that in the commutative case, this reduces to

$$
(M N)^{\frac{1}{2}} \circ(M N)^{\frac{1}{2}} \leq M \circ N .
$$

In addition, in the same paper Ando generalized this inequality to the case of several commuting positive definite $n \times n$ matrices to get

$$
\begin{equation*}
\prod_{j=1}^{m} \circ\left(\prod_{i=1}^{m} M_{i}\right)^{\frac{1}{m}} \leq \prod_{i=1}^{m} \circ M_{i} . \tag{2}
\end{equation*}
$$

In 1994, Sagae and Tanabe [5] extended Ando's definition of the geometric mean of two matrices to the case of several positive definite $n \times n$ matrices.

Definition 1 (Sagae and Tanabe, [5]). Let w_{1}, \ldots, w_{k} be positive numbers summing to 1, and let M_{1}, \ldots, M_{k} be positive definite $n \times n$ matrices. Define their weighted geometric mean $G_{w}\left(M_{1}, \ldots, M_{k}\right)$ to be

$$
M_{k}^{\frac{1}{2}}\left(M_{k}^{-\frac{1}{2}} M_{k-1}^{\frac{1}{2}} \cdots\left(M_{3}^{-\frac{1}{2}} M_{2}^{\frac{1}{2}}\left(M_{2}^{-\frac{1}{2}} M_{1} M_{2}^{-\frac{1}{2}}\right)^{u_{1}} M_{2}^{\frac{1}{2}} M_{3}^{-\frac{1}{2}}\right)^{u_{2}} \cdots M_{k-1}^{\frac{1}{2}} M_{k}^{-\frac{1}{2}}\right)^{u_{k-1}} M_{k}^{\frac{1}{2}},
$$

where $u_{i}=1-\left(w_{i+1} / \sum_{j=1}^{i+1} w_{j}\right)$ for $i=1, \ldots, k-1$.
When $k=2$ and $w_{1}=w_{2}=1 / 2$ this geometric mean reduces to Ando's geometric mean. As a result of their definition, they were able to prove the following inequalities.

Theorem 1 (Sagae and Tanabe, [5]). Define the weighted arithmetic mean $A_{w}\left(M_{1}, \ldots, M_{k}\right)$ and weighted harmonic mean $H_{w}\left(M_{1}, \ldots, M_{k}\right)$ to be

$$
\begin{aligned}
A_{w}\left(M_{1}, \ldots, m_{k}\right) & :=w_{1} M_{1}+\cdots+w_{k} M_{k} \\
\text { and } \quad H_{w}\left(M_{1}, \ldots, M_{k}\right) & :=\left(w_{1} M_{1}^{-1}+\cdots+w_{k} M_{k}^{-1}\right)^{-1} .
\end{aligned}
$$

Then

$$
H_{w}\left(M_{1}, \ldots, M_{k}\right) \leq G_{w}\left(M_{1}, \ldots, M_{k}\right) \leq A_{w}\left(M_{1}, \ldots, M_{k}\right) .
$$

All inequalities are strict unless $M_{1}=\cdots=M_{k}$.

Using Theorem 1, Feng and Tonge [4] were able to build a new inequality with the tensor product of matrices. Before stating the result, we need to recall the following tensor product definition. If $M=\left(m_{i j}\right)$ is an $k \times l$ matrix and $N=\left(n_{i j}\right)$ is an $s \times t$ matrix, then their tensor (or Kronecker) product is the $k s \times l t$ matrix

$$
M \otimes N=\left[\begin{array}{ccc}
m_{11} N & \cdots & m_{1 l} N \\
\vdots & \cdots & \vdots \\
m_{k 1} N & \cdots & m_{k l} N
\end{array}\right]
$$

The tensor product of finitely many matrices can be defined by induction. Although the proof is a multi-stage induction argument, the following is a powerful result.

Theorem 2 (Feng and Tonge, [4]). If $M_{i j}(1 \leq i \leq m, 1 \leq j \leq k)$ are positive definite $n \times n$ matrices, and $w_{i}(1 \leq i \leq m)$ are positive scalars summing to 1 , then

$$
\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) \leq \sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}
$$

As an application, they generalized Ando's inequality $\left(A_{1}\right)$ in the following theorem.

Theorem 3 (Feng and Tonge, [4]). Let $M_{i}(1 \leq i \leq m)$ be positive $n \times n$ matrices. Then

$$
G_{w}\left(M_{i_{1}}, \ldots, M_{i_{m}}\right) \circ G_{w}\left(M_{j_{1}}, \ldots, M_{j_{m}}\right) \circ \cdots \circ G_{w}\left(M_{k_{1}}, \ldots, M_{k_{m}}\right) \leq \prod_{i=1}^{m} \circ M_{i}
$$

where $\left\{i_{1}, \ldots, i_{m}\right\},\left\{j_{1}, \ldots, j_{m}\right\}, \ldots,\left\{k_{1}, \ldots, k_{m}\right\}$ are any permutations of $\{1,2, \ldots, m\}$.

In this paper, we will show that we can actually prove more than Theorem 2 . We will generalize the relationship between the harmonic and geometric means. Furthermore, if we change the weight conditions to real numbers $w_{i}(1 \leq i \leq k)$ such that $w_{1}>0, w_{i}<0(2 \leq i \leq k)$ and $\sum_{i=1}^{k} w_{i}=1$, we will prove a new series of generalized inequalities for the arithmetic, geometric and harmonic means dealing with the tensor product of matrices.

2 Main Results

Our results will make use of the the following properties of tensor products.

Lemma 1. Let M_{i} be positive definite $m_{i} \times m_{i}$ matrices $(1 \leq i \leq k)$. Then, for any real number α,

$$
\left(\prod_{i=1}^{k} \otimes M_{i}\right)^{\alpha}=\prod_{i=1}^{k} \otimes M_{i}^{\alpha}
$$

In particular,

$$
\left(\prod_{i=1}^{k} \otimes M_{i}\right)^{-1}=\prod_{i=1}^{k} \otimes M_{1}^{-1}
$$

which can be found in Feng and Tonge [4].

Lemma 2 (Feng and Tonge, [4], Theorem 3). Let $M_{i j}(1 \leq i \leq m, 1 \leq j \leq k)$ be positive $n \times n$ matrices, and let $w_{i}(1 \leq i \leq m)$ be positive scalars summing to 1. Then

$$
G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right)=\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots M_{m j}\right)
$$

If α is any real number, we can define the α-power mean (see Ando [3]) as

$$
G^{(\alpha)}(M, N):=N^{\frac{1}{2}}\left(N^{-\frac{1}{2}} M N^{-\frac{1}{2}}\right)^{\alpha} N^{\frac{1}{2}}
$$

Using induction, for $k \geq 2$, we define the general α-power mean as

$$
G^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}\left(M_{1}, \ldots, M_{k+1}\right):=M_{k+1}^{\frac{1}{2}}\left(M_{k+1}^{-\frac{1}{2}} G^{\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)}\left(M_{1}, \ldots, M_{k}\right) M_{k+1}^{-\frac{1}{2}}\right)^{\alpha_{k}} M_{k+1}^{\frac{1}{2}}
$$

where $\alpha_{1}, \ldots, \alpha_{k}$ are any real numbers.
In [2], Ando also mentioned the relation between the geometric mean and the inverse of matrices for two positive definite matrices; namely,

$$
G\left(M_{1}^{-1}, M_{2}^{-1}\right)=G^{-1}\left(M_{1}, M_{2}\right)
$$

In fact, it can be extended to an identity for α-power mean of two positive matrices.

$$
\begin{aligned}
& G^{(\alpha)}\left(M_{1}^{-1}, M_{2}^{-1}\right) \\
= & \left(M_{2}^{-1}\right)^{\frac{1}{2}}\left(\left(M_{2}^{-1}\right)^{-\frac{1}{2}} M_{1}^{-1}\left(M_{2}^{-1}\right)^{-\frac{1}{2}}\right)^{\alpha}\left(M_{2}^{-1}\right)^{\frac{1}{2}} \\
= & \left(M_{2}^{\frac{1}{2}}\right)^{-1}\left(\left(M_{2}^{-\frac{1}{2}} M_{1} M_{2}^{-\frac{1}{2}}\right)^{-1}\right)^{\alpha}\left(M_{2}^{\frac{1}{2}}\right)^{-1} \\
= & \left(M_{2}^{\frac{1}{2}}\left(M_{2}^{-\frac{1}{2}} M_{1} M_{2}^{-\frac{1}{2}}\right)^{\alpha} M_{2}^{\frac{1}{2}}\right)^{-1} \\
= & \left(G^{(\alpha)}\left(M_{1}, M_{2}\right)\right)^{-1} .
\end{aligned}
$$

A quick induction is sufficient to extend this to the general α-power mean of more than two matrices.

Lemma 3. Let $M_{i}(1 \leq i \leq k)$ be positive definite $n \times n$ matrices, and let $\alpha_{i}(1 \leq i \leq k)$ be real scalars. Then

$$
G^{\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)}\left(M_{1}^{-1}, \ldots, M_{k}^{-1}\right)=\left(G^{\left(\alpha_{1}, \ldots, \alpha_{k-1}\right)}\left(M_{1}, \ldots, M_{k}\right)\right)^{-1}
$$

In particular,

$$
G_{w}\left(M_{1}^{-1}, \ldots, M_{k}^{-1}\right)=\left(G_{w}\left(M_{1}, \ldots, M_{k}\right)\right)^{-1} .
$$

Using these we can prove the following generalization of the arithmetic-geometric-harmonic mean inequality involving tensor products.

Theorem 4. Let $M_{i j}(1 \leq i \leq m, 1 \leq j \leq k)$ be positive definite $n \times n$ matrices, and let $w_{i}(1 \leq i \leq m)$ be positive scalars summing to 1 . Then

$$
\begin{equation*}
\left(\sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}^{-1}\right)^{-1} \leq \prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) \leq \sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j} \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(\sum_{i_{1}, \ldots, i_{m}} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j}^{-1}\right)^{-1} \leq G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right) \\
\leq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j}, \tag{2}
\end{gather*}
$$

where the equalities hold if and only if $\quad \prod_{j=1}^{k} \otimes M_{1 j}=\cdots=\prod_{j=1}^{k} \otimes M_{m j}$.

Proof: The right hand side of (1) was proved by Feng and Tonge in [4]. For the left hand side of (1), substituting $M_{i j}^{-1}$ for $M_{i j}$ in the right hand side and using Lemma 3, we obtain

$$
\prod_{j=1}^{k} \otimes\left(G_{w}\left(M_{1 j}, \ldots, M_{m j}\right)\right)^{-1}=\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}^{-1}, \ldots, M_{m j}^{-1}\right) \leq \sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}^{-1}
$$

Using Lemma 1 and the above inequality, we have

$$
\left(\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right)\right)^{-1} \leq \sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}^{-1} .
$$

Thus,

$$
\left(\sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}^{-1}\right)^{-1} \leq \prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) .
$$

For the right hand side of (2), we use Lemma 2 and the right hand side of (1) to obtain

$$
\begin{aligned}
& G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right)=\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) \\
& \leq \prod_{j=1}^{k} \otimes\left(\sum_{i=1}^{m} w_{i} M_{i j}\right)=\sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j} .
\end{aligned}
$$

For the left hand side of (2), substituting $M_{i j}^{-1}$ for $M_{i j}$ in right hand side, we get

$$
G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}^{-1}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}^{-1}\right) \leq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j}^{-1} .
$$

Using Lemma 2, Lemma 3, and Lemma 1, in that order, gives us

$$
\begin{aligned}
G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}^{-1}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}^{-1}\right) & =\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}^{-1}, \ldots, M_{m j}^{-1}\right) \\
& =\prod_{j=1}^{k} \otimes\left(G_{w}\left(M_{1 j}, \ldots, M_{m j}\right)\right)^{-1} \\
& =\left(\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right)\right)^{-1}
\end{aligned}
$$

Finally, using Lemma 2 once again, we know that

$$
\left(\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right)\right)^{-1}=\left(G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right)\right)^{-1}
$$

As a result,

$$
\left(G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right)\right)^{-1} \leq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j}^{-1}
$$

Hence,

$$
\left(\sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j}^{-1}\right)^{-1} \leq G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right)
$$

Alić, Mond, Pečarić and Volence [1] gave a generalization of Theorem 1 in the negative weight case. The various means are defined just as before, even if there are negative weights.

Theorem 5 (Alić, Mond, Pečarić and Volence, [1]). Let $M_{i}(1 \leq i \leq k)$ be positive definite $n \times n$ matrices, Let $w_{i}(1 \leq i \leq k)$ be real numbers such that $w_{1}>0, w_{i}<0(2 \leq i \leq k)$, and $\sum_{l=1}^{k} w_{l}=1$. Then

$$
A_{w}\left(M_{1}, \ldots, M_{k}\right) \leq G_{w}\left(M_{1}, \ldots, M_{k}\right)
$$

If $w_{1} M_{1}^{-1}+\cdots+w_{k} M_{k}^{-1}>0$, then

$$
G_{w}\left(M_{1}, \ldots, M_{k}\right) \leq H_{w}\left(M_{1}, \cdots, M_{k}\right)
$$

Equalities hold if and only if $M_{1}=\cdots=M_{k}$.

From Theorem 5, using a proof similar to Theorem 4, we obtain the following.

Theorem 6. Let $M_{i j}(1 \leq i \leq m, 1 \leq j \leq k)$ be positive definite $n \times n$ matrices, and let $w_{i}(1 \leq i \leq k)$ be real numbers such that $w_{1}>0, w_{i}<0(2 \leq i \leq k)$ and $\sum_{l=1}^{k} w_{l}=1$. Then

$$
\prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) \geq \sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}
$$

and

$$
\begin{aligned}
& G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right) \geq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j} . \\
& \text { If } \quad w_{1} \prod_{j=1}^{k} \otimes M_{1 j}^{-1}+\cdots+w_{m} \prod_{j=1}^{k} \otimes M_{m j}^{-1}>0 \text {, then } \\
& \left(\sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \otimes M_{i j}^{-1}\right)^{-1} \geq \prod_{j=1}^{k} \otimes G_{w}\left(M_{1 j}, \ldots, M_{m j}\right)
\end{aligned}
$$

and

$$
\left(\sum_{i_{1}, \ldots, i_{m}} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \otimes M_{i_{j} j}^{-1}\right)^{-1} \geq G_{w}\left(\prod_{j=1}^{k} \otimes M_{1 j}, \ldots, \prod_{j=1}^{k} \otimes M_{m j}\right) .
$$

Equalities hold if and only if $\quad \prod_{j=1}^{k} \otimes M_{1 j}=\cdots=\prod_{j=1}^{k} \otimes M_{m j}$.

In some situations, tensor product results can be transferred to results on Hadamard products. This is a consequence of the fact that there is a positive linear map Φ_{k} from n^{k}-dimensional Hilbert space to n-dimensional Hilbert space such that, for all $n \times n$ matrices $M_{i}(1 \leq i \leq k)$,

$$
\begin{equation*}
\Phi_{k}\left(\prod_{i=1}^{k} \otimes M_{i}\right)=\prod_{i=1}^{k} \circ M_{i} . \tag{*}
\end{equation*}
$$

Now using (*), Theorem 4, and Lemma 2, we have the following result for the Hadamard products.

Theorem 7. Let $M_{i j}(1 \leq i \leq m, 1 \leq j \leq k)$ be positive definite $n \times n$ matrices, and let $w_{i}(1 \leq i \leq k)$ be positive scalars summing to 1. Then

$$
\prod_{j=1}^{k} \circ G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) \leq \sum_{i_{1}=1}^{m} \cdots \sum_{i_{m}=1}^{m} w_{i_{1}} \cdots w_{i_{m}} \prod_{j=1}^{k} \circ M_{i_{j} j}
$$

Using (*) and Theorem 6, we obtain the second result for Hadamard products.

Theorem 8. Let $M_{i j}(1 \leq i \leq m, 1 \leq j \leq k)$ be positive definite $n \times n$ matrices, and let $w_{i}(1 \leq i \leq k)$ be real numbers such that $w_{1}>0, w_{i}<0(2 \leq i \leq k)$ and $\sum_{l=1}^{k} w_{l}=1$. Then

$$
\prod_{j=1}^{k} \circ G_{w}\left(M_{1 j}, \ldots, M_{m j}\right) \geq \sum_{i=1}^{m} w_{i} \prod_{j=1}^{k} \circ M_{i j}
$$

References

[1] M. Alić, B. Mond, J. Pečarić and V. Volence, The Arithmetic-Geometric-Harmonic mean and related matrix inequalities. Linear Algebra Appl. 264(1997) 55-62.
[2] T. Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl., 26(1979) 203-241.
[3] Ando, T. and Hiai, F., Hölder type inequalities for matrices. Mathematical Inequalities Appl. 1(1998) 1-30.
[4] B. Q. Feng and A. M. Tonge, Geometric Means and Hadamard Products, submitted.
[5] M. Sagae and K. Tanabe, Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices. Linear and Multilinear Algebra, 37(1994) 279-282.

